Пусть мы хотим научить MLP (Multilayered perceptron) отличать отрезки (например, длиной 255 значений) некоторого полезного сигнала (например, первых разностей ценового ряда) от отрезков «белого шума». То есть, банально, если на входе сети (255 входных нейронов) полезный сигнал, то на выходе мы хотим получать сигнал как можно ближе (в идеале равный) 1, а если на входе «шум», то 0.
Понятно, что мы можем сгенерировать столько образцов белого шума, сколько захотим, однако — вопрос! — можно ли в части шума обойтись без обучения сети «в лоб», а решить задачу аналитически, так чтобы — вместо обучения сети шуму — получить некоторые условия на веса сети?